
Learning multi-agent state space representations

Yann-Michaël De
Hauwere

Computational Modeling Lab
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, BELGIUM

ydehauwe@vub.ac.be

Peter Vrancx
Computational Modeling Lab

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussel, BELGIUM
pvrancx@vub.ac.be

Ann Nowé
Computational Modeling Lab

Vrije Universiteit Brussel
Pleinlaan 2

1050 Brussel, BELGIUM
anowe@vub.ac.be

ABSTRACT
This paper describes an algorithm, called CQ-learning, which
learns to adapt the state representation for multi-agent systems in
order to coordinate with other agents. We propose a multi-level
approach which builds a progressively more advanced representa-
tion of the learning problem. The idea is that agents start with a
minimal single agent state space representation, which is expanded
only when necessary. In cases where agents detect conflicts, they
automatically expand their state to explicitly take into account the
other agents. These conflict situations are then analyzed in an at-
tempt to find an abstract representation which generalises over the
problem states. Our system allows agents to learn effective poli-
cies, while avoiding the exponential state space growth typical in
multi-agent environments. Furthermore, the method we introduce
to generalise over conflict states allows knowledge to be transferred
to unseen and possibly more complex situations. Our research de-
parts from previous efforts in this area of multi-agent learning be-
cause our agents combine state space generalisation with an agent-
centric point of view. The algorithms that we introduce can be
used in robotic systems to automatically reduce the sensor infor-
mation to what is essential to solve the problem at hand. This is
a must when dealing with multiple agents, since learning in such
environments is a cumbersome task due to the massive amount of
information, much of which may be irrelevant. In our experiments
we demonstrate a simulation of such environments using various
gridworlds.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms

Keywords
Reinforcement Learning, Knowledge representation

1. INTRODUCTION
Reinforcement learning (RL) has already been shown to be a pow-
erful tool for solving single agent Markov Decision Processes

Cite as: Learning multi-agent state space representations, Y-M. De
Hauwere, P. Vrancx and A. Nowé, Proc. of 9th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), van der
Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

(MDPs) [14]. It allows a single agent to learn a policy that max-
imises a possibly delayed reward signal in an initially unknown
stochastic stationary environment. However, when multiple agents
are present in the environment and influence each other, the con-
vergence guarantees of RL no longer hold since the agents now
experience a non-stationary environment [15].

A straightforward approach to deal with this issue is to provide
the agents with sufficient information to make the environment they
experience stationary. Generally, this means allowing them to ob-
serve the state information and selected actions of all the agents
in the environment. This becomes untractable very quickly since
usually both the state and the action space in which the agents now
learn are exponential in the number of agents. As such, this ap-
proach is unsuitable for all but the smallest environments with only
a few agents present.

Recently a lot of attention has gone to mitigating this problem by
learning interdependencies between agents [11, 10] and learning
when action coordination is beneficiary [12]. These approaches
however are still focused on determining specific states in which
coordination is necessary. Even though we start from this same
assumption, we also learn to generalise over these states in order
to reduce our state space even further and to be able to tranfer our
knowledge to different environments. Such generalisations can be
very useful in applications such as Robocup soccer where some
tactics might be applicable in a defensive as well as in an offensive
phase.

Our approach starts with independently trained agents and main-
tains statistics on observed returns. If the statistics indicate that
a change in the policy is needed, the independent state space of
an agent is expanded with relevant state information about other
agents, in order to allow the agent to learn a better policy. Further-
more we adapt the state space representation to an agent-centric
representation in order to be able to generalise from experience.
Unlike the work of Ghavamzadeh et al. in [6] coordination among
agents is done at the level of primitive actions and not at a subtask
level since this requires prior knowledge of the problem at hand.

The remainder of this paper is organised as follows. In Section
2 we elaborate on the necessary background and related work to
understand the algorithm introduced in this paper. Section 3 in-
troduces our approach for learning in which states the influence of
other agents must be taken into account. We learn to generalise
over these states in Section 4. Experiments which illustrate our
method in various gridworld environments are presented in Section
5 . We show that our approach can learn an accurate set of states
in which the agents influence each other, as well as learn a good
generalisation for these states. Finally, we conclude in Section 6.

715

715-722

2. BACKGROUND INFORMATION

2.1 MDPs and Q-learning
Reinforcement Learning (RL) is an approach to solving a Markov
Decision Process (MDP), where an MDP can be described as fol-
lows. Let S = {s1, . . . ,sN} be the state space of a finite Markov
chain {xl}l≥0 and let A = {a1, . . . ,ar} be the action set available
to the agent. Each combination of starting state si, action choice
ai ∈ Ai and next state s j has an associated transition probability

T (si,ai,s j) and immediate reward R(si,ai). The goal is to learn a
policy π, which maps an action to each state so that the expected
discounted reward Jπ is maximised:

Jπ ≡ E

[
∞

∑
t=0

γtR(s(t),π(s(t)))

]
(1)

where γ ∈ [0,1) is the discount factor and expectations are taken
over stochastic rewards and transitions. This goal can also be ex-
pressed using Q-values which explicitly store the expected dis-
counted reward for every state-action pair:

Q∗(s,a) = R(s,a)+ γ∑
s′

T (s,a,s′)max
a′

Q(s′,a′) (2)

So in order to find the optimal policy, one can learn this Q-function
and subsequently use greedy action selection over these values in
every state. Watkins described an algorithm to iteratively approx-
imate Q∗. In the Q-learning algorithm [17], a table consisting of
state-action pairs is stored. Each entry contains the value for Q̂(s,a)
which is the learner’s current hypothesis about the actual value of
Q(s,a). The Q̂-values are updated according to following update
rule:

Q̂(s,a) ← Q̂(s,a)+αt [R(s,a)+ γmax
a′

Q̂(s′,a′)− Q̂(s,a)] (3)

where αt is the learning rate at time step t.
Provided that all state-action pairs are visited infinitely often and

a appropriate learning rate is chosen, the estimates Q̂ will converge
to the optimal values Q∗ [15].

2.2 Markov Game Definition
In a Markov Game, actions are the joint result of multiple agents
choosing an action individually. Ak = {a1

k , . . . ,a
r
k} is now the

action set available to agent k, with k : 1 . . .n, n being the total
number of agents present in the system. Transition probabilities
T (si,ai,s j) now depend on a starting state si, ending state s j and

a joint action from state si, i.e. ai = (ai
1, . . . ,a

i
n) with ai

k ∈ Ak.

The reward function Rk(si,ai) is now individual to each agent k,
meaning that agents can receive different rewards for the same
state transition.

In a special case of the general Markov game framework, the so-
called team games or multi-agent MDPs (MMDPs) optimal poli-
cies still exist [1, 2]. In this case, all agents share the same re-
ward function and the Markov game is purely cooperative. This
specialisation allows us to define the optimal policy as the joint
agent policy, which maximises the payoff of all agents. In the non-
cooperative case typically one tries to learn an equilibrium between
agent policies [9, 7, 16]. These systems need each agent to calcu-
late equilibria between possible joint actions in every state and as
such assume that each agent retains estimates over all joint actions
in all states.

2.3 Related work
In recent multi-agent research a lot of attention has been given to
the problem of local coordination problems in a RL setting. Kok &
Vlassis introduced an approach where agents learn when it is ben-
eficial to coordinate with other agents in fully cooperative games
[10]. They attempt to reduce the action space which agents need
to consider, by letting the agents learn individually, without taking
into account the other agents. Only in states where a dependency
between the agents exists they learn in the joint action space. To
this end they use coordination graphs (CGs) [8] to describe the de-
pendencies between agents. Figure 1 shows a graphical represen-
tation of a simple CG for a given situation where the effect of the
actions of agent 4 depend on the actions of agent 2 and the actions
of agent 2 and 3 both depend on the actions of agent 1.

A1

A2

A4

A3

Figure 1: Simple coordination graph. In the depicted situation
the effect of the actions of agent 4 depends on the actions of
agent 2 and the actions of agent 2 and 3 both depend on the
actions of agent 1.

Kok & Vlassis [11] explicitly specify these graphs beforehand,
while in Kok et al. [10] this approach is extended to also learn the
graphs using statistical information about the obtained rewards con-
ditioned on the states and actions of the other agents. As such, the
approach always uses complete information about the joint state-
action space in which the agents are learning (i.e. agents are fully
observable). From this information they manage to learn a compact
representation for the action space of the agents, based on CGs.
This approach however is limited to fully cooperative MAS.

Spaan and Melo approached the problem of coordination from
a different angle [13]. They introduced a new model for multi-
agent decision making under uncertainty called interaction-driven
Markov games (IDMG). This model contains a set of interaction
states which lists all the states in which coordination should occur.
In later work, Melo and Veloso [12] introduced an algorithm where
agents learn in which states they need to condition their actions on
other agents. As such, their approach can be seen as a way of solv-
ing an IDMG where the states in which coordination is necessary is
not specified beforehand. To achieve this they augment the action
space of each agent with a pseudo-coordination action. This action
will perform an active perception step. This could for instance be a
broadcast to the agents to divulge their location or using a camera
or sensors to detect the location of the other agents. This active
perception step will decide whether coordination is necessary or if
it is safe to ignore the other agents. Since the penalty of misco-
ordination is bigger than the cost of using the active perception,
the agents learn to take this action in the interaction states of the
underlying IDMG. Note here that the outcome of this algorithm is
strongly dependent on the value of this penalty. A too low value of
this parameter could cause the agents to always coordinate, while
a too high value would cause them to never choose their coordi-

716

nate action. In terms of independence this approach however still
requires a common reward component, based on the overall state
of the game and on the actions of all agents.

De Hauwere et al. [4, 3] proposed another solution to coordi-
nation problems, i.e. a two layer approach called 2observe. The
first layer uses a Generalized Learning Automaton (GLA) to de-
cide whether agents could act independently on the second layer,
effectively ignoring the presence of other agents, or if a form of
coordination mechanism has to be used in that layer in order to
avoid that the agents would influence each other in a negative way.
Figure 2(a) shows a graphical representaton of a generalisation in
gridworld navigation tasks that was learned with the 2observe al-
gorithm. The GLA received the manhattan distance between two
agents as input and based on this distance, the agents learn in which
surrounding area attention had to be payed to the presence of other
agents. This approach however implies that the environment has to
inform the GLA about the correct action to take by means of an ap-
propriate reward signal. This is a requirement that can not always
be met.

The rationale behind the new approach presented in this paper
is that we do not rely on the environment to inform the agent
explicitly about its danger zone. Furthermore, we can even reduce
the generalised area by providing more relevant state information,
such as the preferred action of the agent. Figure 2(b) shows the
reduction we learn. In the next section we explain our approach in
depth.

(a) (b)

Figure 2: (a) Generalisation learned by 2observe and (b) the
generalisation that was obtained using a neural network and
relevant state information of the CQ-Learning algorithm.

3. LEARNING COORDINATION STATES
Our first step towards reducing our state space is to start from a sin-
gle agent representation and identify those states in which agents
are experiencing negative influence due to the presence of other
agents. To this end we developed CQ-Learning, which stands for
Coordinating Q-learning. This algorithm will identify states in
which an agent should take other agents into account when choos-
ing its preferred action and will condition the need for coordination
on the preferred action of the other agent. This means that if both
agents are adjacent to each other, but their respective preferred ac-
tions do not influence each other, the algorithm will not coordinate
since there is no need for coordination.

We assume that our agents have already learnt an optimal single
agent policy when acting alone in the environment. Using this prior
knowledge, every agent has a model of its expected rewards for
every state action pair. The algorithm then uses a Student’s t-test to

detect if there are changes in the observed rewards for the selected
state-action pair. Two situations can occur:

1. The statistics detect a change in the received immediate re-
wards. In this situation, the algorithm will mark this state
and search for the cause of this change by collecting new
samples from the joint state space and as such identifies the
joint state-action pairs in which collisions occur. These state-
action pairs are then marked as being dangerous and the state
space of the agent is augmented by adding this joint state.
State-action pairs that did not cause collisions are marked as
being safe, i.e. the agent’s actions in this state are indepen-
dent from the states of other agents. So the algorithm will
first attempt to detect changes in the rewards an agent re-
ceives, solely based on its own state, before trying to identify
for which states of the other agent these changes occur.

2. The statistics indicate that the rewards the agent receives are
from the same distribution as if the agent was acting alone.
No special action is taken in this situation and the agent con-
tinues to act as if it was alone.

Each time an agent comes in a marked state, it will observe
whether it is in one of the joint states in which it must take the
other agent into consideration. If so, an action is selected using this
joint state and following update rule is used:

Q j
k(js,ak) ← (1−αt)Q

j
k(js,ak)+αt [r(js,ak)+ γmax

a′k
Q(s′,a′k)]

where Qk stands for the Q-table containing the independent states,

and Q j
k contains the joint states (js). Note that this second Q-table

is initially empty. The Q-values of the single states of an agent are
used to bootstrap the Q-values of the states that were augmented to
joint states. When an agent comes in a state which has not been
marked by the agent, no updates are executed. The algorithm is
more formally described in Algorithm 1.

A graphical representation of CQ-Learning is given in Figure
3. Agents begin with 9 independent states. After a while states
4 and 6 of an agent are expanded to include the states of another
agent. This means that states 4 and 6 were marked at some point
by the statistical test on line 9 of the algorithm and aftwerwards the
test on line 11 showed that states 1, 2 and 3 of another agent were
responsible for the changes in the reward for state 4 and states 1
and 2 were responsible for the changes that occured when the agent
selected its preferred action in state 6. In the following section we
explain how the second step of the approach works, i.e. generalise
over the found coordination states.

4. GENERALISING OVER
COORDINATION STATES

As mentioned previously, the size of the state space an agent has
to deal with in a multi-agent system is exponential in the number
of agents. When joint states and joint actions are always observed,
learning in such systems is a cumbersome task with no guarantees
of finding good solutions. In the previous section we already intro-
duced an algorithm capable of only taking joint states into consid-
eration when past experience has proven that this was necessary.

Our goal is to further reduce this augmented state space by learn-
ing a generalisation over the states in which coordination was nec-
essary. In the gridworld problems we use in our experiments, it
is immediately obvious for a human observer that agents need to
coordinate to avoid collisions, whenever they are close and mov-
ing towards each other. However, with the CQ-learning approach

717

Algorithm 1 CQ-Learning algorithm for agent k

1: Initialise Qk and Q j
k;

2: while true do
3: if ∀ Agents k, state sk of Agent k is a safe state then
4: Select ak for Agent k from Qk
5: else
6: Select ak for Agent k from Q j

k
7: end if
8: ∀ Agents Ak, sample 〈sk,ak,rk〉
9: if t-test detects difference in observed rewards vs expected

rewards then
10: for ∀ seen states sk of agent Ak do
11: if t-test detects difference between independent state s

and joint state js then
12: add js to Q j

k
13: mark js as dangerous
14: else
15: mark js as safe
16: end if
17: end for
18: end if
19: if sk is safe for Agent k then
20: No need to update Qk(s).
21: else
22: Update Q j

k(js) ← (1 − αt)Q
j
k(js) + αt [r(js,ak) +

γ maxaQ(s′k),a]
23: end if
24: end while

Expand

Generalise

32

7 98

5

1

4 6

4-1 4-2 4-3 6-1 6-2

Figure 3: Independent single states are expanded to joint-states
where necessary. Here some states of agent 2 are added to the
state representation of agent 1 in states 4 and 6 because these
states are identified by the algorithm as states in which coordi-
nation is necessary. Over these expanded states we generalise
to reduce the state space again.

above, agents have to learn for each possible conflict location and
for each other agent, which agent location and action combinations
can cause collisions. This is clearly not the most efficient method,
since relatively simple rules exist that can guide an agent through
all possible problem locations. We will now introduce a method
that attempts to learn such a generalisation over the conflict situa-
tions.

To this end we use the knowledge gathered during the execu-
tion of CQ-learning, and adapt the state space representation to an
agent-centric factored representation. An agent-centric represen-
tation only has meaning relative to the agent using it and to the
context in which it is being used [5]. The main advantage of such
a representation is that if our state information is represented as
’There is an agent North-East of your current position’, it doesn’t
matter what the current position of the agent is, nor does it matter
which agent it is. Furthermore, this kind of information is a bet-
ter match for a mobile robot learning problem. In such a setting
robots are more likely to have access to sensor readings of their
immediate surroundings, rather than full information on the abso-
lute positions of all robots. A factored representation means that a
state is represented using a set of random variables X = X1, . . . ,Xn
where each state variable Xi can assume values in a finite domain
Dom(Xi). Each possible system state corresponds to a value assign-
ment xi ∈ Dom(Xi) for every state variable Xi.

Different machine learning techniques are able to generalise over
these states, going from rule learning to kernel based approaches.
Here we used a feedforward neural network, which was trained
with the samples collected during the execution of CQ-learning
which are refactored to an agent-centric representation, i.e.:

s1,s2,a1,a2 → Δ(x),Δ(y),a1,a2

where a1 and a2 are the preferred actions of agent 1 and 2 respec-
tively. This means that the absolute location, s1 and s2, of the
agents for the states CQ-Learning marked as safe or dangerous, is
refactored to a relative distance between the agents, Δ(x) and Δ(y),
respectively in the horizontal and vertical axis. Each agent uses
one neural network to generalise over its safe and dangerous states.
This neural network is trained as shown in Figure 4.

�(x)

�(y)

a1

a2

input hidden output

0 | 1

Figure 4: Neural network used for the generalisation after CQ-
Learning. The number of units in the hidden layer were varied
over the experiments

For every sample, the Δ(x) and Δ(y) are determined and stored
together with a boolean value that indicates if this is a sample that
resulted in a collision, or if it was a safe sample. When enough

718

samples are gathered, the neural network is trained with these sam-
ples as input and the boolean value as output.

In practice this neural network can then be used to allow the
agent to choose whether it should observe certain locations when
choosing an action or not (as shown in the example of Figure 2(b)).
There the agent wants to select the action that would take it to the
East of its current position. Using the neural network the agent
can find out which of its surrounding locations it must take into ac-
count to avoid colliding with other agents by querying the network
with some possible values for the location and action of the other
agent. As another example, in a predator-prey setting, an agent
can use the neural network to find out when he has to coordinate
with another agent in order to capture the prey. We illustrate our
algorithm in this paper in function of our application, which is a
set of gridworld environments, but our approach can be applied to
most multi-agent reinforcement learning problems by adopting a
suitable agent-centric representation for the coordination problem
that occurs in that particular setting.

5. EXPERIMENTAL RESULTS
The testbed for our algorithms is a set of two-agent gridworld
games with varying difficulty in terms of size complexity and num-
ber of possible encounters with other agents. We compared our
algorithms to independent Q-learners (Indep) that learned without
any information about the presence of other agents in the environ-
ment, joint-state learners (JS), which received the joint location of
the agents as state information but chose their actions indepen-
dently and joint-state-action learners (JSA) which also received a
joint location as input, but selected a joint action (a so-called su-
peragent). For this latter, the reward was given when both agents
reached their goal state, but once an agent was in his goal state, he
remained in the goal. As such, we could apply joint-state-action
learners, because this approach was developed for pure cooperative
MAS whereas in most of our environments the agents have a dif-
ferent reward function. The environments we used are depicted in
Figure 5. Environments (b) to (e) are an adaptation from the games
used by Melo & Veloso [12]. In our games collisions are not lim-
ited to a small predetermined set, but can occur in every location
of the gridworld. All experiments were run with two agents each
having their own goal, except for TunnelToGoal. If both agents
would adopt the shortest solution in this environment they would
constantly collide at the entrance of the tunnel.

All experiments with the independent learners, joint-state
learners, joint-state-action learners and the joint-state learners
used in CQ-Learning, were run with a learning rate of 0.05 and
exploration was regulated using a fixed ε-greedy policy with
ε = 0.1. Transitions are deterministic and rewards are given as
follows: +20 for reaching the goal state, −1 for colliding into a
wall, −10 for colliding into another agent. For CQ-Learning the
rewards are chosen from a normal distribution (for implementation
reasons) with the mean as mentioned above. Agents were trained
for 10,000 iterations with this configuration. The resulting policy
was then played greedily for 1000 iterations and averaged over 10
runs.

Table 1 shows the size of the state space for the different al-
gorithms, as well as the size of the action space, the number of
collisions and the average number of steps for each agent to reach
the goal in the different environments. We see that all approaches
manage to find a collision free path to the goal, but the number of
steps greatly varies. Independent learners learn a policy where one
agent will not take its shortest path, but take a detour to reach the
goal. CQ-Learning does not have to do this since it can include

the location of the other agent, in states where this is necessary and
as such make the detour much smaller (just one state is enough) to
allow the other agent to pass through. Throughout almost all exper-
iments the joint-state-action learners perform worse than all other
approaches. This is partly due to the size of the state-action space
in which they have to learn which slows their learning process con-
siderably compared to the other approaches and partly due to the
fact that this approach is not suited for RL problems where agents
do not share the same reward function.

As an example let us consider the TunnelToGoal environment.
Using CQ-learning both agents learned to include the other agent’s
location in their state representation at the entrance of the tunnel,
as well as some other states in which changes in the reward were
detected. As such the algorithm is on average learning in a state
space consisting of approximately 27 states. Using an even higher
confidence interval for the Student-t test might reduce the inclusion
of unnecessary states, but we found that using a value of 99%
certainty gave good overall results in all environments.

In general we can say that CQ-Learning learns a collision
free-policy with a minimal extension of the state space. Moreover
our algorithm conditions on its preferred action. This means
that if agent 1 is situated right next to agent 2, but the preferred
action of agent 1 is to move away from the other agent, it will
never see this situation as being possibly dangerous. This is a
significant difference to previous work [12], where the avoidance
of coordination in such a situation is highly dependent on the
penalty for miscoordination in that situation and how often it
occurs.

Env Alg #states #actions #coll #steps
TTG Indep 25 4 0 11±0.0

JS 625 4 0 13.3±1.1
JSA 625 16 0 15.3±1.89
CQ 27±0.67 4 0 10.6±0.1

TR Indep 36 4 0 9±0.0
JS 1296 4 0 12.1±0.32

JSA 1296 16 0 13.7±2.06
CQ 38.0±2.1 4 0 9.05±0.03

ISR Indep 43 4 0 7.7±18.9
JS 1849 4 0 5.8±0.89

JSA 1849 16 0 7±1.5
CQ 48.3±1.2 4 0 5±0.28

CIT Indep 69 4 0 18.9±17.9
JS 4761 4 0 15.4±0.5

JSA 4761 16 0 20.4±1.43
CQ 77.0±6.5 4 0 11.2±0.9

CMU Indep 133 4 0 35.9±2.8
JS 17689 4 0 47.7±5.6

JSA 17689 16 0 67.1±4.2
CQ 140.5±4.3 4 0 31.3±0.9

Table 1: Size of the state space, number of collisions and num-
ber of steps for different approaches in the different games. (In-
dep = Independent Q-Learners, JS = Joint-state learners, JSA
= Joint-state-action learners, CQ = CQ-Learners.)

After our initial experiments we tested our generalisation
approach in the 5 environments. For these experiments we started
from the same assumption as for CQ-learning, i.e. agents know
how to act independently in the environment if they are alone. For

719

G

G2
1

G1

2

(a) TunnelToGoal (TTG) (b) CMU

1 2

G2 G1

G1

G2
1

2

G1

2

G2
1

(c) Two Robot game (TR) (d) ISR (e) CIT

Figure 5: The different games used throughout this experiment. (b), (c), (d) and (e) are variations on games from Melo et al. In all
these games, collisions can occur in every state.

our neural network this means that we started with a set consisting
of only safe samples. To this set we added the samples that were
gathered during the execution of CQ-Learning by converting the
states that were marked safe and dangerous to an agent centric
representation. We then trained the neural network with this entire
set. We used 80% of the collected samples to train our neural
network. The remaining 20% were used to validate the network.
We experimented with different quantities of hidden units using a
logistic output unit activation function and tested the quality of the
neural network. Table 2 shows the accuracy of the neural networks.
We can see that as soon as we use 4 hidden units or more, the
performance of our network is at least 97% in all environments.

If avoiding miscoordination is critical in the particular situation
at hand, the set could also be initialized with samples that classify
every situation as being dangerous. As such the neural network will
learn high output values for situations that did not occur during the
execution of CQ-Learning.

Figure 6 shows two contour plots of the policy of one of the
neural networks for actions EAST,WEST for agent 1 and agent 2
respectively. The horizontal distance between the agents, Δx, is
represented on the x-axis and the vertical distance, Δy on the y-
axis. A high output value (close to 1) means there is a high need
for coordination for that situation. A low output value (close to
0) means there is no danger and an agent can select its preferred
action without taking other agents into consideration. For instance,
〈Δx = −2,Δy = 0,a1 = EAST,a2 = WEST 〉. This means that the
agents are two cells apart on the same height. With actions EAST,
WEST the agents would certainly collide since this brings them to
the same location. In the left figure we can see that this situation has
a very high value and is correctly identified as being a dangerous
situation. Notice also that in this figure we clearly see the effect
of initialising the neural network with only safe samples. Every

situation maps to a low output value, unless where the network
was trained with samples which indicated that coordination was
necessary. In the figure on the right this same situation also has a
high output value, but this network was initialised with dangerous
samples. This results in a network that will output a high value
for unseen situations, until the network is trained more with safe
samples for these cases. Depending on the particular problem at
hand, one would prefer one approach over the other. Initialising
with dangerous states is much safer to avoid collisions in unseen
situations, but will result in more coordinations than if the network
was trained with safe samples for unseen situations.

6. DISCUSSION
In this paper we presented CQ-learning, a learning algorithm capa-
ble of exploiting independent experience in a multi-agent environ-
ment while learning a multi-agent representation for states where
single agent representations are insufficient to reach a good policy.
This is done by means of statistical tests to determine if changes in
the immediate rewards an agent receives are significant and if this
is the case, augment the representation of that state to include the
location of the other agent. The second contribution of this paper is
the introduction of a generalisation technique over the augmented
state representations by means of a neural network. With this gen-
eralisation agents can, in a robotic system, configure the sensors of
the robot in order to minimise the flow of information from these
sensors to the minimum of what is necessary to predict collisions
with other robots and thus avoid them.

Our experiments show that our algorithm is capable of learning
a collision free policy in all environments with a limited number
of states in which the joint location of the agents had to be ob-
served. This is a vast improvement over joint-state and joint-state-
joint-action learners where the size of the state-action space quickly
grows out of reasonable bounds. Moreover, unlike the approach de-

720

Figure 6: Output of the neural network for actions EAST, WEST for respectively agent 1 and agent 2. A high output value (close to 1)
means there is a high need for coordination for that situation, a low output value (close to 0) means there is no need for coordination.
(a) the neural network was initialised with all safe samples and (b) the network was initialised with dangerous samples.

Game Agent # hidden units in the neural network
1 2 4 6 8

TunnelToGoal
1 88.21% 93.70% 98.53% 98.54% 98.71%
2 97.74% 98.52% 98.63% 98.64% 98.64%

TwoRobot
1 98.35% 98.35% 98.35% 98.35% 98.35%
2 99.62% 99.62% 99.62% 99.62% 99.62%

ISR
1 89.93% 92.54% 96.65% 97.31% 97.53%
2 90.46% 95.24% 97.87% 98.43% 98.97%

CIT
1 81.97% 93.00% 97.00% 97.82% 98.04%
2 86.88% 91.95% 97.62% 98.67% 98.84%

CMU
1 76.93% 96.53% 96.63% 97.11% 97.21%
2 97.90% 98.67% 99.23% 99.29% 99.53%

Table 2: Accuracy of the neural network in the different games with different quantities of hidden units.

scribed by Melo & Veloso [12], the performance of our algorithm
does not depend on the cost of using the pseudo-coordinate action
and does not require a common reward component for all agents.

One interesting issue to explore is the scalability and the per-
formance of our approach to situations with more than two agents
and situations in which coordination might be needed among more
than two agents; we might even treat the agents as heterogeneous
entities. Our algorithm is currently still limited to situations where
the change needed to solve the coordination problem is in the same
state as where the change in immediate rewards occur. It would
be interesting to be able to solve problems at time step t even if
the rewards only change at time step t + n with n ≥ 1. This situ-
ation does not occur in the settings we explored here, but imagine
that the order in which the agents reach the goal in the TunnelTo-
Goal environment has importance. This would be a case where the
immediate reward only changes around the goal, but where the co-
ordination must happen at the entrance of the tunnel. One possible
approach to solve this would be to perform the statistical test of
CQ-Learning on the Q-values instead of on the immediate rewards.

Another interesting approach would be to reduce the assump-
tion of trained agents, by augmenting the state space while the
agents are learning and also training the neural network online.
This would make it possible for agents to rapidly learn which situ-

ations are dangerous and in a robotic context, to learn quickly how
to configure the sensors. Thanks to the generalisation this would
mean that the agent could decide at runtime which state informa-
tion is relevant. It could switch from the independent level to the
augmented multi-agent level and even further to the more abstract
generalised level without requiring any human interaction.

Acknowledgments
Yann-Michaël De Hauwere and Peter Vrancx are both funded by a
Ph.D grant of the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT Vlaanderen)

7. REFERENCES
[1] C. Boutilier. Planning, learning and coordination in

multiagent decision processes. In Proceedings of the 6th
Conference on Theoretical Aspects of Rationality and
Knowledge, pages 195–210, Renesse, Holland, 1996.

[2] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In Proceedings
of the Fifteenth National Conference on Artificial
Intelligence, pages 746–752. AAAI Press, 1998.

721

[3] Y.-M. De Hauwere, P. Vrancx, and A. Nowé. Learning what
to observe in multi-agent systems. In Proceedings of the 20th
Belgian-Netherlands Conference on Artificial Intelligence,
pages 83–90, 2009.

[4] Y.-M. De Hauwere, P. Vrancx, and A. Nowé. Multi-agent
systems and large state spaces, chapter to appear.
Multi-agent system technology for Internet and Enterprise
Systems. Springer, 2010.

[5] S. Finney, P. Wakker, L. Kaelbling, and T. Oates. The thing
that we tried didn’t work very well : Deictic representation in
reinforcement learning. In Proceedings of the 18th Annual
Conference on Uncertainty in Artificial Intelligence, pages
154–160, San Francisco, CA, 2002. Morgan Kaufmann.

[6] M. Ghavamzadeh, S. Mahadevan, and R. Makar. Hierarchical
multi-agent reinforcement learning. Autonomous Agents and
Multi-Agent Systems, 13:197–229, 2006.

[7] A. Greenwald and K. Hall. Correlated-Q learning. In AAAI
Spring Symposium, pages 242–249. AAAI Press, 2003.

[8] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated
reinforcement learning. In Proceedings of the 19th
International Conference on Machine Learning, pages
227–234, 2002.

[9] J. Hu and M. Wellman. Nash Q-learning for general-sum
stochastic games. Journal of Machine Learning Research,
4:1039–1069, 2003.

[10] J. Kok, P. ’t Hoen, B. Bakker, and N. Vlassis. Utile
coordination: Learning interdependencies among
cooperative agents. In Proceedings of the IEEE Symposium
on Computational Intelligence and Games (CIG05), pages
29–36, 2005.

[11] J. Kok and N. Vlassis. Sparse cooperative Q-learning. In
Proceedings of the 21st International Conference on
Machine learning. ACM New York, NY, USA, 2004.

[12] F. Melo and M. Veloso. Learning of coordination: Exploiting
sparse interactions in multiagent systems. In Proceedings of
the 8th International Conference on Autonomous Agents and
Multi-Agent Systems, 2009.

[13] M. Spaan and F. Melo. Interaction-driven Markov games for
decentralized multiagent planning under uncertainty. In
Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems, pages 525–532,
2008.

[14] R. Sutton and A. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[15] J. Tsitsiklis. Asynchronous stochastic approximation and
Q-learning. Journal of Machine Learning, 16(3):185–202,
1994.

[16] P. Vrancx, K. Verbeeck, and A. Nowé. Decentralized
learning in markov games. IEEE Transactions on Systems,
Man and Cybernetics (Part B: Cybernetics), 38(4):976–981,
2008.

[17] C. Watkins. Learning from Delayed Rewards. PhD thesis,
University of Cambridge, 1989.

722

